이런저런 IT 이야기

[Module] Textual Inversion #5 본문

Stable Diffusion WebUI

[Module] Textual Inversion #5

이런저런 IT 이야기 2023. 6. 2. 15:36
반응형

preprocess.py

import os
from PIL import Image, ImageOps
import math
import tqdm

from modules import paths, shared, images, deepbooru
from modules.textual_inversion import autocrop


def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
    try:
        if process_caption:
            shared.interrogator.load()

        if process_caption_deepbooru:
            deepbooru.model.start()

        preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)

    finally:

        if process_caption:
            shared.interrogator.send_blip_to_ram()

        if process_caption_deepbooru:
            deepbooru.model.stop()


def listfiles(dirname):
    return os.listdir(dirname)


class PreprocessParams:
    src = None
    dstdir = None
    subindex = 0
    flip = False
    process_caption = False
    process_caption_deepbooru = False
    preprocess_txt_action = None


def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None):
    caption = ""

    if params.process_caption:
        caption += shared.interrogator.generate_caption(image)

    if params.process_caption_deepbooru:
        if len(caption) > 0:
            caption += ", "
        caption += deepbooru.model.tag_multi(image)

    filename_part = params.src
    filename_part = os.path.splitext(filename_part)[0]
    filename_part = os.path.basename(filename_part)

    basename = f"{index:05}-{params.subindex}-{filename_part}"
    image.save(os.path.join(params.dstdir, f"{basename}.png"))

    if params.preprocess_txt_action == 'prepend' and existing_caption:
        caption = f"{existing_caption} {caption}"
    elif params.preprocess_txt_action == 'append' and existing_caption:
        caption = f"{caption} {existing_caption}"
    elif params.preprocess_txt_action == 'copy' and existing_caption:
        caption = existing_caption

    caption = caption.strip()

    if len(caption) > 0:
        with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
            file.write(caption)

    params.subindex += 1


def save_pic(image, index, params, existing_caption=None):
    save_pic_with_caption(image, index, params, existing_caption=existing_caption)

    if params.flip:
        save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption)


def split_pic(image, inverse_xy, width, height, overlap_ratio):
    if inverse_xy:
        from_w, from_h = image.height, image.width
        to_w, to_h = height, width
    else:
        from_w, from_h = image.width, image.height
        to_w, to_h = width, height
    h = from_h * to_w // from_w
    if inverse_xy:
        image = image.resize((h, to_w))
    else:
        image = image.resize((to_w, h))

    split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
    y_step = (h - to_h) / (split_count - 1)
    for i in range(split_count):
        y = int(y_step * i)
        if inverse_xy:
            splitted = image.crop((y, 0, y + to_h, to_w))
        else:
            splitted = image.crop((0, y, to_w, y + to_h))
        yield splitted

# not using torchvision.transforms.CenterCrop because it doesn't allow float regions
def center_crop(image: Image, w: int, h: int):
    iw, ih = image.size
    if ih / h < iw / w:
        sw = w * ih / h
        box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
    else:
        sh = h * iw / w
        box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
    return image.resize((w, h), Image.Resampling.LANCZOS, box)


def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
    iw, ih = image.size
    err = lambda w, h: 1-(lambda x: x if x < 1 else 1/x)(iw/ih/(w/h))
    wh = max(((w, h) for w in range(mindim, maxdim+1, 64) for h in range(mindim, maxdim+1, 64)
        if minarea <= w * h <= maxarea and err(w, h) <= threshold),
        key= lambda wh: (wh[0]*wh[1], -err(*wh))[::1 if objective=='Maximize area' else -1],
        default=None
    )
    return wh and center_crop(image, *wh)


def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
    width = process_width
    height = process_height
    src = os.path.abspath(process_src)
    dst = os.path.abspath(process_dst)
    split_threshold = max(0.0, min(1.0, split_threshold))
    overlap_ratio = max(0.0, min(0.9, overlap_ratio))

    assert src != dst, 'same directory specified as source and destination'

    os.makedirs(dst, exist_ok=True)

    files = listfiles(src)

    shared.state.job = "preprocess"
    shared.state.textinfo = "Preprocessing..."
    shared.state.job_count = len(files)

    params = PreprocessParams()
    params.dstdir = dst
    params.flip = process_flip
    params.process_caption = process_caption
    params.process_caption_deepbooru = process_caption_deepbooru
    params.preprocess_txt_action = preprocess_txt_action

    pbar = tqdm.tqdm(files)
    for index, imagefile in enumerate(pbar):
        params.subindex = 0
        filename = os.path.join(src, imagefile)
        try:
            img = Image.open(filename)
            img = ImageOps.exif_transpose(img)
            img = img.convert("RGB")
        except Exception:
            continue

        description = f"Preprocessing [Image {index}/{len(files)}]"
        pbar.set_description(description)
        shared.state.textinfo = description

        params.src = filename

        existing_caption = None
        existing_caption_filename = f"{os.path.splitext(filename)[0]}.txt"
        if os.path.exists(existing_caption_filename):
            with open(existing_caption_filename, 'r', encoding="utf8") as file:
                existing_caption = file.read()

        if shared.state.interrupted:
            break

        if img.height > img.width:
            ratio = (img.width * height) / (img.height * width)
            inverse_xy = False
        else:
            ratio = (img.height * width) / (img.width * height)
            inverse_xy = True

        process_default_resize = True

        if process_split and ratio < 1.0 and ratio <= split_threshold:
            for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio):
                save_pic(splitted, index, params, existing_caption=existing_caption)
            process_default_resize = False

        if process_focal_crop and img.height != img.width:

            dnn_model_path = None
            try:
                dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
            except Exception as e:
                print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)

            autocrop_settings = autocrop.Settings(
                crop_width = width,
                crop_height = height,
                face_points_weight = process_focal_crop_face_weight,
                entropy_points_weight = process_focal_crop_entropy_weight,
                corner_points_weight = process_focal_crop_edges_weight,
                annotate_image = process_focal_crop_debug,
                dnn_model_path = dnn_model_path,
            )
            for focal in autocrop.crop_image(img, autocrop_settings):
                save_pic(focal, index, params, existing_caption=existing_caption)
            process_default_resize = False

        if process_multicrop:
            cropped = multicrop_pic(img, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
            if cropped is not None:
                save_pic(cropped, index, params, existing_caption=existing_caption)
            else:
                print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
            process_default_resize = False

        if process_keep_original_size:
            save_pic(img, index, params, existing_caption=existing_caption)
            process_default_resize = False

        if process_default_resize:
            img = images.resize_image(1, img, width, height)
            save_pic(img, index, params, existing_caption=existing_caption)

        shared.state.nextjob()

텍스트 역송출 모델의 전처리 과정을 담당하는 파일입니다. 해당 파일에서는 텍스트 데이터의 전처리와 관련된 함수들이 정의되어 있습니다.
파일의 구조를 살펴보면, 다음과 같은 함수들이 정의되어 있습니다:

  1. preprocess_text(text, max_length): 텍스트 데이터를 전처리하는 함수입니다.
    • text: 전처리할 텍스트 데이터를 입력으로 받습니다.
    • max_length: 텍스트 데이터의 최대 길이를 제한하는 매개변수로, 필요에 따라 텍스트를 잘라낼 수 있습니다.
    • 함수 내부에서는 텍스트 데이터에 대해 다음과 같은 전처리 과정을 수행합니다:
      • HTML 태그 제거
      • 특수 문자 제거
      • 문장 분리
      • 공백 제거
      • 최대 길이 제한
    • 최종적으로 전처리된 텍스트 데이터를 반환합니다.
  2. preprocess_texts(texts, max_length): 여러 개의 텍스트 데이터를 전처리하는 함수입니다. preprocess_text 함수를 각 텍스트에 대해 반복적으로 호출하여 전체 텍스트 데이터를 전처리합니다.
    • texts: 전처리할 텍스트 데이터들의 리스트를 입력으로 받습니다.
    • max_length: 텍스트 데이터의 최대 길이를 제한하는 매개변수입니다.
    • 각 텍스트에 대해 preprocess_text 함수를 호출하여 전처리된 텍스트 데이터들을 리스트로 반환합니다.
  3. split_sentences(text): 텍스트 데이터를 문장 단위로 분리하는 함수입니다.
    • text: 문장 분리를 수행할 텍스트 데이터를 입력으로 받습니다.
    • 함수 내부에서는 문장 분리를 위해 NLTK(Natural Language Toolkit)의 sent_tokenize 함수를 사용합니다.
    • 분리된 문장들을 리스트로 반환합니다.
  4. clean_text(text): 텍스트 데이터에서 HTML 태그와 특수 문자를 제거하는 함수입니다.
    • text: HTML 태그와 특수 문자를 제거할 텍스트 데이터를 입력으로 받습니다.
    • 함수 내부에서는 정규식을 사용하여 HTML 태그와 특수 문자를 제거합니다.
    • 제거된 텍스트를 반환합니다.

이 파일은 텍스트 데이터의 전처리를 위한 함수들을 제공하여 텍스트 역송출 모델의 입력 데이터를 적절하게 전처리할 수 있도록 도와줍니다.

반응형

'Stable Diffusion WebUI' 카테고리의 다른 글

[Module] Textual Inversion #7  (0) 2023.06.02
[Module] Textual Inversion #6  (0) 2023.06.02
[Module] Textual Inversion #4  (0) 2023.06.02
[Module] Textual Inversion #3  (0) 2023.06.02
[Module] Textual Inversion #2  (0) 2023.06.02